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ABSTRACT

The dispersion characteristics of
arbitrarily-shaped waveguldes With sharp
metal edges are found by a finite element
method in which the usual polyIiomIals are
supplemented by singular trial functions,
As In recent approaches, the method solves
for the three components of magnetic field
and can thereby avoid spurious modes.

INTRODUCTION

Waveguldes with sharp metal edges are
widely Used at microwave frequencies:
examples are ridge guide, mlcrostrlp,
slot-llne and fln-llne. It 1s often
necessary to be able to predict dispersion
In such waveguides and numerous analytical
techniques have been developed for
particular geometries. For example, the
singular integral equation [1] and
spectral domain methods [2] have been used
to find dLSperSIOXI cuPves for planar
waveguldes with infinitely-thin conduct-
ors, Of the techniques capable of analys-
Ing arbitrary geometries, there has been
some success with flnlte element and
flnlte difference methods which use two
axial field components as un~nowns.
However this approach cannot handle
generally-anisotropic materials and, more
seriously, suffers from the presence of
spurious solutlons, For these reasons, a
better approach is to use the three-
component magnetic field, H, as the
unknown [3). The finite element method in
this case finds the stationary points of
the followlng functional:

s
J[(VxH)*.#- 2F(H) = (VXH) + s lV”lJrHl

kg H*.PP.H] dS (1)

* denotes complex-conjugate; S is the
cross-section of the waveguide; Cr and LIP
are the relative permittivity and per-
meability tensors. The variation of H with
time and with the axial coordinate z is of
the form exp(.jtit-.jBz) , where w 1s the
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angul a~ frequency (racLs/s) and p is the
phase constant (rads/m). K. ~s the wave-
number, Q/c, where c IS the veloclty of
light in vacuo. The term involving the
divergence of H 1S a Penalty term [3],
addeti to remove spurious mocles, s 1s a
real scalar, called the penalty parameter,
The stationary points (H,ko) of F are the
modes of the waveguide which have the
specified value of $. A similar functional
eXIStS for the electric field,

Unfortunately, the transverse part of
the magnetic or electrlc fielcl 1s infinite
at a sharp edge of a perfectly-conducting
boundary [4]. This 1S quite different to
the behavlour of the axial components, or
of the potential used in quasi-static
analysis - these variables have inflnlte
derivatives at such an edge, but are
themselves finite, The three-component
methods presented to date do not adequate-
ly address the problems that this singu-
larity poses. The methock have used as
basis functions the piecewise-polynomials
traditional ly associated with finite
elements. It is clear that such trial
functions cannot represent accurately an
infinite field.

SINGULAR TRIAL FUNCTIONS

A solution to this problem is to
supplement the polynomials with singular
trial functions, a technlc[ue that has been
often used for dependent variables which
have Infinite derivatives. A typical sharp
edge, and cylindrical coordinates based on
lt, are shown in Figure 1,

Let a be the interior angle at the
edge, in radians between x and 211. The
transverse magnetic field near a sharp
edge, when no magnetic material is
present, 1s the gradient of a harmonic
function which satisfies Neumann boundary
conditions on the two conducting surfaces
[4] . Starting from this, the field may be
expressed as a series in powers of r, of
which just the first m. terms are singu-
lar:
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where Am are arbitrary COefflClentS and

(2)

fm=r ‘q-i ~arcos(mq(9-90)-a9sln(mq(9-90)l

(3)

q=

ar anti a+ are unit vectors In the raalal
and azimuthal directions respectively.

There are a maximum of three singular

functions ‘m for each sharp cage. Of

these, only the first 1s lnfinlte at the
edge; the remainder have lnflnlte derlva-
tlves< A similar expansion 1s possible for
the transverse electrlc field.

\
I

Interior

+x

“)
Exterior

~~ure ~: The cylindrical coordinate
syst~ based on a sharp edge of a perfect–
ly-conducting boundary.

Suppose that for the problem as a

whole, there are 13 such singular func-

t~ons, f;, ..,fM. One trial function gm may

defineci for each of these, such that in

any triangle:

n

gin(r) = fro(r) - X“ fman(r)
n> i

(4)

Here r 1$ the position vector; an are the

usual no Lagrange polynomials associated
wltn triangular flnlte elements [5]; and

fm 1s the value of fm at the ntfi node Qf
the triangle, or zero lf fm lS inflnlte at
the nth node. The functions gm are so

constructed that the y have the same
behavlour as the corresponding fm near the
latter’s singular point, but they vanish
at every other node of the finite element
mesh.

The magnetic field In any triangle
then taKes the form:

n H
H(r) = ZO Hnan(r) + Z Kmgm ( r ) (5)

n= 1 m= 1

where Hn are t?ae
magnetic field at no
angle; and Km are
clents of the singular

unknown values of
nofles of the trl-
the unKnown coeffl-
trlal functions.

To evaluate the functional F (1) for
a magnetic field of the form (5), a
certain amount of integration must be
performed. Those Lntegrals which do not
Involve the singular trial functions were
carried out in closed form Dy maKlng use
of the concept of the universal matrix
[5]; for the remainder, Gaussian integra-
tion was used. F’lnally, the stationary
points of the functional F are given by
the elgensolutlons of the matrix equation:

(A+sC)x=k~Bx (6)

where A, ‘ B and C are large, sparse,
square, Hermltlan matrices, and xisa
column vector whose entries are tne
unknown components of magnetic field at
the nodes, and the coefficients %
Efflclent methods exist for flndlng the
first few elgenvalues and corresponding
elgenvectors of this sparse matrix
equation; In the present instance, the
Trace Mlnlmlzation method is used [6].
This method requires the storage and
manipulation of only the nonzero entries
of the matrices, and has a complexity
which 1s roughly 0(N2), where N lS the
matrix dlmenslon. A modification of the
algorlt~m [7] allows for the automatic
adjustment of the penalty parameter s
during solutlon, to ellminate spurious
modes. However, when JUSt the slow-wave
region is of Interest, lt is sufficient
to hold the penalty parameter fixed at 1.0

[8], and this approach was taKen for the
microstrlp” problems below.

RES{JLTS

Figure 2 shows a rectangular wave-
guxde with twin cioub 1e ridges. This

structure Is alr-filled and has modes
which are TE or TM, so It could be more
efficiently analyzed with a single
long~tudlnal component of E or H, However,
it was chosen as a test problem because lt
has 8 sharp edges (4 in the half problem).
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half of the problem was analysed, with a
magnetic wall on the plane of symmetry. 73
second-order elements were used (most o-f
them placed close to the central conduct-
ing strip). The clispersion curves for the
lowest two modes are Showrn in Figure 4,I dl I
for an isotropic dielectric,
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Figure ~: Rectangular waveguide with two
double ridges. b/a-oe 5, cl/b=o. 1,
s/a=O, 125, h/b=O, 7, t/a=O. 5. The broRen
line is a plane of symmetry.

One half of the problem was analyzed,
using 42 second-order elements and 8
singular trial functions, To get the two
lowest modes, it was necessary to solve
two problems: one with an electric wall
and with a magnetic wall on the plane of
symmetry. Each problem was analyzed twice,
once with the magnetic field as the
unKnown and once with the electric field.
Since the lowest two modes are TE, the
magnetic field was entirely axial, and did
not involve the singular trial functions;
the electric field is of more interest,
because it is transverse and infinite at
the sharp edges. The cut-off frequencies
have been previously obtained with an
accuracy of about 1X [9]. See Table 1.
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Fi~ ~: A shielded microstrip trans--
fission line. The broken line shows the
plane of symmetry. L=i?. ‘i’mm, W=l. 27mm,
h~l. 2’i’mm, H=12.7mm.
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Table ~: The—. cut-off wave-number, F..
(rads/m), for the first two modes of the

waveguide shown in Figure 2.

The electric field cases were also
solved without singular trial functions,

Knit with the field constrained to be in
the direction of an average normal at each
sharP edge. The first two wave-numbers

wr~ !!: Dispersion curves for the first
two modes of the transmission line of
Figure 3, with a magnetic wall at the
plane of symmetry, Isotropic substrate,
eP=8. 875, t=o, The solid line for the
lowest mode is from [11; the solid line
for the next mode is from [10); squares
are finite–element results. The broken
line marked STATIC is the low-frequency
approximation for the dominant mode, from
Wheeler [11].

extremely inaccurate: 3. 05 r’ads/rn andwere
3. 23

shie

rads/m respectively.

A second test problem was the

ded microstrip shown in Figure 3. One
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The same microstrip was
with an anisotropic substrate,
are shown in FigUre 5.
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Urs 5: Dispersion curves for the first
two modes of the transmission line of
Figure 3, with a magnetic wal 1 at the
plane of symmetry. Saphire substrate:
erxxz9. 4, e r.
solid line
present.

A thlcK
0.05)<

magnetic fie

~z1l.6 anti erzz:9,4. t=O, The
is from [12], with no snield

strip was also analysed (t/h
The transverse part Of the
d is shown in Figure 6.
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E!42zc,, !?: Transverse part of the magnetic
field, in the vicinity of the strip, for
the transmission llne of Figure 3,
erZ8. 875, t/h = 0,05. The left-hand edge
of the diagrams corresponds to the plane
of symmetry in Figure 3, The frequency is
11.3 GHz.
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