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ABSTRACT
The dispersion characteristics of
arbitrarily-shaped waveguides with sharp

metal edges are found by a finite element
method in which the wusual polynumials are
supplemented by singular trial functions.
As 1n recent approaches, the method solves
for the three components of magnetic field
and c¢an thereby avoid spurious modes.

INTRODUCTION

Waveguildes with sharp metal edges are
widely used at microwave frequencies:
examples are ridge guide, microstrip,
slot-line and fin-~line. It 18 often
necessary to be able to predict dispersion
in such waveguides and numerous analytical
technigques have been developed for
particular geometiries. For example, the
singular integral equation {13 and
spectral domain methods [2] have been used
to find dispersion curves for planar
waveguides with infinitely-thin conduct-
ors. Of the techniques capable of analys-
ing arbitrary geometiries, there has been
some success with finite element and
finite difference methods which use two
axial fielad components as unknowns.
However this approach cannot handle
generally-anisotropic materaials and, more
seriously, suffers from the presence of
spurious solutions. For these reasons, a
better approach 1is to wuse the three-
component magnetic field, H, as the
unknown {3}, The finite element method in
thais case finds the stationary points of
ithe following functional

F(H) = I[(vm)*-e;i-(vm) + s Iv-pr}lla
S

2 *
- kg H -p -H] ds (1)

¥ denotes complex-conjugate; S
cross-section of the waveguide;

are the relative permittivity and per-
meability tensors. The variation of H with
time and with the axial coordinate zZ is of

the form exp(jwt-iBz), where w 18 the

is the
€pr and ppn
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angular frequency (rads/s) and B is the
rhase constant (rads/m). Ko 15 the wave-
number, w/c, where ¢ 1s the velocity of
light in vacuo. The term involving the
divergence of H 1s a penality term [3],
added to remove spurious modes. s 1s a
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real scalar, called the penalty parameter,
The stationary points (H,Ky) of F  are the
modes of the waveguide which have the
specified value of B. A similar functional
exists for the electric field

Unfortunately, the transverse part of
the magnetic or electric £field 1s 1nfinite
at a sharp edge of a perfectly-conducting
boundary ([43}. This 1s gquite different to
the behaviour of the axial components, or

of the potential used in quasi-static
analysis - these variables have infinite
derivatives at such an edge, but are
themselves finite, The three-component

methods presented to date do not adequate-
ly address the problems that this singu-
larity poses. The methodls have used as
basis functions the plecewise-polynomials
traditionally associated with finite
elements. It 1is c¢lear that such traial
functions cannot represent accurately an
infinite field.

SINGULAR TRIAL FUNCTIONS
A solution +to this problem 1is to
supplement the polynomials with singular
trial functions, a technicue that has been
often used for dependent variables which
have 1nfinite derivatives., A typical sharp
edge, and cylindrical coordinates based on
1t, are shown in Figure 1.

Let « be
edge, in radians
transverse
edge, when
present, 18
function which

the interior angle at the
between 1w and 2u. The
magnetic field near a sharp
no magnetic material is
the gradient of a harmonic

satisfies Neumann boundary
conditions on the two conducting surfaces
{41, Starting from this, 1ihe field may be
expressed as a series in powers of r, of
which just the first my lerms are singu-
lar:
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Am fm(r.w) +  O(r) (2)

where A are arbitrary coefficaients and

ma-1

f =T [a.cosmale-o ) -a, sin(ma(e-¢ )]

(3)
L 2

q = o and mg = 1nt [ 3 ]

a, and a, are unit vectors in the radial

and azimuthal directions respectively.

There are a maximum of three singular

functions £ for each sharp edge. Of

these, only the first 1s i1nfinite at the

edge; the remainder have 1infinite deriva-

tives. A similar expansion 18 possible for

the transverse electric field.

Interior
[72)
0 px
Exterior
Figure 1: The cylindrical coordinate

system based on a sharp edge of a perfect-
ly-conducting boundary.

suppose that for the problem as a
whole, there are M such singular func-
tions, £y4,..,fy One trial function gy may
defined for each of these, such that 1in
any triangle:

nO
B
n=1

gm(r) = fm(r) - fmnan(r) (4)

Here r 1s the position vector; ap are the
usual n, Lagrange polynomials associated
witnh triangular finite elements [6]; and
fqnn 15 the value of f at the nth node of
the triangle, or zero 1f £ 1s infinite at
the nth node. The functions gy are so
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constructed that they have the same
behaviour as the corresponding fy near the
latter’s singular point, but they vanish

at every other node of the finite element
mesh.
The magnetic field 1in any triangle
then takes the form:
n, M
H(r) = }H Hnan(r) + I ngm(r) (5)
n=1 ms i
where Hp are the unknown values of
magnetic field at ng nodes of the tri-
angle; and Ky are the unknown coeffi-

cients of the singular trial functirons.

To evaluate the functaional F (1) for
a magnetic field of the form (5), a
certain amount of 1integration must be
performed. Those 1ntegrals which do not
involve the singular trial functions were
carried out 1in closed form by making use
of the concept of the universal matrix
[5]; for the remainder, Gaussian integra-
tion was used. Fainally, the stationary
points of the functional F are given by
the eigensolutions of the matrix equation:

2

(A + 8C) x = B x

(6)

where
square,
column

A, B and C are large,

Hermitian matrices, and X is a
vector whose entries are the
unknown components of magnetic field at
the nodes, and the coefficients Kp.
Efficient methods exist for finding the
first few e1lgenvalues and corresponding
ergenvectors of this sparse matrix
equation; 1n the present instance, the
Trace Minimization method 1is used [6].
This method requires the storage and
manipulation of only the nonzero entries
of the matrices, and has a complexity
which 13 ©roughly O(N2), where N 1s the
matrix dimension. A modification of the

sparse,

algoritnm 71 allows for the automatic
adjustment of the penalty parameter s
during solution, to eliminate spurious
modes. However, when Just the slow-wave
region is of interest, 1t is sufficient

to hold the penaliy parameter fixed at 1.0
[8)], and this approach was taken for the
microstrip problems below.

RESULTS
Figure 2 shows a rectangular wave-
guide with itwin double ridges. This
structure 1s air-filled and has modes
which are TE or THM, so 1t could e more
efficiently analyzed with a single
longitudinal component of E or H, However,
it was chosen as a test problem because 1t
has 8 sharp edges (4 in the half problem).
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Figure 2: Rectangular waveguide with two
double ridges. b/a:=0,5, a/»n=0.1,
s/a=0, 125, h/b=0, 7, t/a=0, 5, The broken

line is a plane of symmetry.

One half of the problem was analyzed,
using 42 second-order elements and 8
singular trial functions. To get the two
lowest modes, it was necessary to solve
two problems: one with an electric wall
and with a magnetic wall on the plane of
symmetry. Each problem was analyzed twice,

once with the magnetic field as the
unknown and once with the electric field.
Since the lowest +two modes are TE, the
magnetic field was entirely axial, and did

not involve the singular trial functions;

the electric field is of more interest,
because it is transverse and infinite at
the sharp edges. The cut-off frequencies

have been previously obtained
accuracy of about 17 [91].

with an
See Table 1.

FE Solution
Mode Ref, [9]
Magnetic Electric
Dominant 0. 923 Q, 904 Q.911
Subdominant{ .77 1..150 1. 161
Table 1: The cut-off wave-number, Ko
(rads/m), for the first two modes of the

waveguide shown in Figure 2.

The electric field cases were also
solved without singular trial functions,
put with +the field constrained to be in

the direction of an average normal at each
sharp edge. The first two wave-numbers
were extremely inaccurate: 3.05 rads/m and
3. 23 rads/m respectively,

the
Oone

A second test problem was
shielded microstrip shown in Figure 3.
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half of +the problem was analysed, with a
magnetic wall on the plane of symmetry. 73
second-order elements were used (most of
them placed close to the central conduct-
ing strip). The dispersion curves for the
lowest two modes are shown in Figure 4,
for an isotropic dielectric.
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Figure 3: A shielded microstrip trans-
mission line. The Dbroken 1line shows the
plane of symmetry. L.=1&. Tmm, W=1, 27mm,
h=1, 27mm, H=12., 7Tmm.
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Figure 4: Dispersion curves for the first
two modes of the +transmission 1line of
Figure 3, with a magnetic wall at the
plane of symmetry. Isotropic¢c substrate,
€n=8.875. t=0. The solid 1line for the
lowest mode is from [1]; the solid line
for the next mode is from [10]; squares
are finite-element resul+is. The broken
line markKed STATIC is the low-frequency

approximation for the dominant mode,
Wheeler {11].

from



The same microstrip was
with an anisotropic substrate,
are shown in Figure 5.

then solved
The results
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Figure 5: Dispersion curves for the first
two modes of the transmission line of
Figure 3, with a magnetic wall at the
plane of symmetry. Saphire substrate:
€rxx=9 4, €pyy=11.6 and €nzy:9. 4% t:=0, The
solid 1line 1is from [12), with no shield
present,

A thick strip was also analysed (t/h
= 0,05). The transverse part of the
magnetic field is shown in Figure 6.
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Figure 6: Transverse part
field, in the vicinity
the transmission line of Figure 3.
€r=8.875, t/n = 0,05, The left-hand edge
of the diagrams corresponds to the plane
of symmetry in Figure 3, The frequency is
11. 3 GHz,

of the magnetic
of the strip, for
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